标量和矢量场的神经近似(例如签名距离函数和辐射场)已成为准确的高质量表示。最先进的结果是通过从可训练的特征网格中进行查找的调节来获得的,这些近似是按照学习任务的一部分,并允许较小,更有效的神经网络。不幸的是,与独立的神经网络模型相比,这些特征网格通常以明显增加的记忆消耗成本。我们提出了一种词典方法,用于压缩此类特征网格,将其内存消耗降低至100倍,并允许多分辨率表示,这对于核心外流很有用。我们将词典优化作为矢量定量的自动码头问题提出,使我们能够在没有直接监督以及具有动态拓扑和结构的空间中学习端到端离散的神经表示。我们的源代码将在https://github.com/nv-tlabs/vqad上找到。
translated by 谷歌翻译
Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. State-of-theart methods typically encode the SDF with a large, fixedsize neural network to approximate complex shapes with implicit surfaces. Rendering with these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics. We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality. We represent implicit surfaces using an octree-based feature volume which adaptively fits shapes with multiple discrete levels of detail (LODs), and enables continuous LOD with SDF interpolation. We further develop an efficient algorithm to directly render our novel neural SDF representation in real-time by querying only the necessary LODs with sparse octree traversal. We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works. Furthermore, it produces state-of-the-art reconstruction quality for complex shapes under both 3D geometric and 2D image-space metrics.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Adversarial attacks hamper the decision-making ability of neural networks by perturbing the input signal. The addition of calculated small distortion to images, for instance, can deceive a well-trained image classification network. In this work, we propose a novel attack technique called Sparse Adversarial and Interpretable Attack Framework (SAIF). Specifically, we design imperceptible attacks that contain low-magnitude perturbations at a small number of pixels and leverage these sparse attacks to reveal the vulnerability of classifiers. We use the Frank-Wolfe (conditional gradient) algorithm to simultaneously optimize the attack perturbations for bounded magnitude and sparsity with $O(1/\sqrt{T})$ convergence. Empirical results show that SAIF computes highly imperceptible and interpretable adversarial examples, and outperforms state-of-the-art sparse attack methods on the ImageNet dataset.
translated by 谷歌翻译
Artificial intelligence (AI) has enormous potential to improve Air Force pilot training by providing actionable feedback to pilot trainees on the quality of their maneuvers and enabling instructor-less flying familiarization for early-stage trainees in low-cost simulators. Historically, AI challenges consisting of data, problem descriptions, and example code have been critical to fueling AI breakthroughs. The Department of the Air Force-Massachusetts Institute of Technology AI Accelerator (DAF-MIT AI Accelerator) developed such an AI challenge using real-world Air Force flight simulator data. The Maneuver ID challenge assembled thousands of virtual reality simulator flight recordings collected by actual Air Force student pilots at Pilot Training Next (PTN). This dataset has been publicly released at Maneuver-ID.mit.edu and represents the first of its kind public release of USAF flight training data. Using this dataset, we have applied a variety of AI methods to separate "good" vs "bad" simulator data and categorize and characterize maneuvers. These data, algorithms, and software are being released as baselines of model performance for others to build upon to enable the AI ecosystem for flight simulator training.
translated by 谷歌翻译
Our education system comprises a series of curricula. For example, when we learn mathematics at school, we learn in order from addition, to multiplication, and later to integration. Delineating a curriculum for teaching either a human or a machine shares the underlying goal of maximizing the positive knowledge transfer from early to later tasks and minimizing forgetting of the early tasks. Here, we exhaustively surveyed the effect of curricula on existing continual learning algorithms in the class-incremental setting, where algorithms must learn classes one at a time from a continuous stream of data. We observed that across a breadth of possible class orders (curricula), curricula influence the retention of information and that this effect is not just a product of stochasticity. Further, as a primary effort toward automated curriculum design, we proposed a method capable of designing and ranking effective curricula based on inter-class feature similarities. We compared the predicted curricula against empirically determined effectual curricula and observed significant overlaps between the two. To support the study of a curriculum designer, we conducted a series of human psychophysics experiments and contributed a new Continual Learning benchmark in object recognition. We assessed the degree of agreement in effective curricula between humans and machines. Surprisingly, our curriculum designer successfully predicts an optimal set of curricula that is effective for human learning. There are many considerations in curriculum design, such as timely student feedback and learning with multiple modalities. Our study is the first attempt to set a standard framework for the community to tackle the problem of teaching humans and machines to learn to learn continuously.
translated by 谷歌翻译
Tourette Syndrome (TS) is a behavior disorder that onsets in childhood and is characterized by the expression of involuntary movements and sounds commonly referred to as tics. Behavioral therapy is the first-line treatment for patients with TS, and it helps patients raise awareness about tic occurrence as well as develop tic inhibition strategies. However, the limited availability of therapists and the difficulties for in-home follow up work limits its effectiveness. An automatic tic detection system that is easy to deploy could alleviate the difficulties of home-therapy by providing feedback to the patients while exercising tic awareness. In this work, we propose a novel architecture (T-Net) for automatic tic detection and classification from untrimmed videos. T-Net combines temporal detection and segmentation and operates on features that are interpretable to a clinician. We compare T-Net to several state-of-the-art systems working on deep features extracted from the raw videos and T-Net achieves comparable performance in terms of average precision while relying on interpretable features needed in clinical practice.
translated by 谷歌翻译
目的:本研究评估了市售可解释的AI算法在增强临床医生在胸部X射线(CXR)上鉴定肺癌的能力的影响。设计:这项回顾性研究评估了11位临床医生在胸部X光片中检测肺癌的表现,并在有和没有市售的AI算法的帮助下(红点,观察到),预测CXRS可疑的肺癌。根据临床确定的诊断评估了临床医生的表现。设置:该研究分析了NHS医院的匿名患者数据;该数据集由成年患者(18岁及以上)的400张胸部X光片组成,他们在2020年进行了CXR,并提供相应的临床文本报告。参与者:由11位临床医生(放射科医生,放射科医生受训者和报告射线照相师)组成的读者小组参加。主要结果指标:临床医生在CXR上检测肺癌的总体准确性,敏感性,特异性和精度,有或没有AI输入。还评估了有或没有AI输入的临床医生与绩效标准偏差之间的协议率。结果:临床医生对AI算法的使用导致肺部肿瘤检测的总体性能提高,从而达到了在CXR上鉴定出的肺癌的总体增长17.4% ,分别增加了13%和13%的阶段1和2期肺癌的检测,以及临床医生表现的标准化。结论:这项研究在AI算法的临床实用性方面表现出了巨大的希望,可以通过整体改善读者表现来改善早期肺癌诊断和促进健康平等,而不会影响下游成像资源。
translated by 谷歌翻译
我们探索不同的策略,将先前的领域知识整合到深神经网络(DNN)的设计中。我们专注于图形神经网络(GNN),其用例是估计表示为图的化学系统(分子和晶体)的势能。我们将域知识的两个要素集成到GNN的设计中,以限制和正规化其学习,以提高准确性和泛化。首先,关于原子之间不同类型关系(化学键)存在的知识用于调节GNN中的节点的相互作用。其次,对某些物理数量的相关性的知识用于使用简单的多任务范式将学习的特征限制为更高的物理相关性。我们通过将它们应用于两个依赖不同机制来传播节点和更新节点状态的不同机制的架构来证明我们的知识集成的一般适用性。
translated by 谷歌翻译
当人类共同完成联合任务时,每个人都会建立一个情况的内部模型以及如何发展。有效的协作取决于这些单个模型如何重叠以在团队成员之间形成共同的心理模型,这对于人类机器人团队中的协作流程很重要。准确的共享心理模型的发展和维护需要个人意图的双向交流以及解释其他团队成员意图的能力。为了实现有效的人类机器人协作,本文介绍了人类机器人团队合作中新型联合行动框架的设计和实施,利用增强现实(AR)技术和用户眼目光来实现意图的双向交流。我们通过与37名参与者的用户研究测试了我们的新框架,发现我们的系统提高了任务效率,信任和任务流利。因此,使用AR和眼睛凝视使双向交流是一种有前途的平均值,可以改善影响人与机器人之间协作的核心组成部分。
translated by 谷歌翻译